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Abstract In this article, an analytical approach is
demonstrated to show the emerging traveling pulses
for the local evolution of a set of diffusively coupled
dynamical equations representing neuronal impulses.
The derived dynamics governing the traveling pulses
solution is described in a space-time reference frame
with a two-dimensional excitable Hindmarsh-Rose (H-
R) type oscillator. We deduce the conditions that allow
us to describe explicitly the nature of propagating trav-
eling pulses. We have constructed the detailed analyt-
ical results using semi-discrete approximation method
with numerical simulations illuminating possible trav-
eling pulses that include dispersion relations and group
velocity equations. We show that the diffusive network
can be expressed by the complex Ginzburg-Landau
equation. The extended excitablemediumwith a homo-
geneous diffusive connection exhibits envelope soli-
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tons andmultipulses.We observe how the series expan-
sion parameter and coupling play key roles for the
appearance of different traveling pulses. The transition
phases and amplitude modulations are reported. The
obtained results in the formof single solitary pulses and
multipulses, reveal the possibility of collective behav-
ior for information processing in excitable system.

Keywords H-R system · Diffusive network · Semi-
discrete approximations · Traveling pulses

1 Introduction

Diverse biophysically motivated excitable models have
been studied to examine neuro-computational charac-
teristics that produce various firing modes [8,16,18,
23]. Single neuron models have the advantage to repro-
duce diverse firing properties [16,17]. These models
are often used to examine the biophysical features
of the nervous system using various network topolo-
gies in cortical regions [3,4,6,17,18] . Hindmarsh and
Rose [14,15] introduced a simplified reduced biophys-
ical model originated from the Hodgkin-Huxley type
model and it exhibits various neuronal firing proper-
ties. Recently, the intrinsic dynamics of the excitable
models have been studied, especially on H-R dynam-
ics. The model is the extended modification of the
FitzHugh-Nagumo (FHN) type model [9]. Realistic
electrical activities of neurons in the H-R model can
be reproduced by introducing a nonlinear polynomial
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function in the FHN dynamical model [22]. Often it
is used to examine the neuro-computational charac-
teristics using various network formations in cortical
networks [16,17]. Tsuji et al. [40] described a 2D H-
R type model exhibiting the properties of both Class I
and Class II neurons with detailed bifurcation analysis
and studied various firing features. Although the model
contains only four parameters, the obtained bifurca-
tion structure satisfies conditions for emergence of both
excitability features with constant stimuli. Later Chen
et al. [5] worked on the H-R dynamics using the spike-
and-rest properties and established the existence of
diverse Hopf bifurcation points.

In excitable spatial systems of coupled neuronal
networks, a transmembrane voltage difference can
travel across the nerve cells as propagating waves
[21,26,35,37]. Hence, it may effect appearance and
disappearance of emerging traveling waves as neu-
ronal responses. Such types of behavior are respon-
sible, that can play a major role in signal processing
[1,3,7,11,13,20,37]. Traveling pulses show a charac-
teristic feature that can be explored with the under-
lying mechanisms of wave propagation in neuronal
tissue. It is a relevant study in understanding both
normal and pathological conditions in neural dynam-
ics [7,11,12,20,27,31,41,43]. The propagation of
the synchronous activity and the effect of the net-
work parameters including plasticity, network architec-
ture, synaptic constants and inhomogeneity have been
widely studied in the recent decades [2,6,32,36]. The
propagation of wavy profiles in the diffusion induced
networks can appear due to the effects of different elec-
trical activities at the single cell level. The appearance
of various traveling waves is often occurred due to self-
organization and interactions in the coupled network.
It might review the regular-irregular dynamics in sig-
nal processing, and functional mechanisms in neural
system.

In this study, our approach dealswith the appearance
and disappearance of emerging diverse traveling waves
in a spatially excitable biophysical media. The work is
motivated by theoretical and experimental studies that
report the presence of localized excitations in certain
neuronal networks [7,19,29,39,41]. In our previous
article [29], the existence of various single pulses in the
H-R spiking-bursting model has been explored using
the tanh method [25,42]. Further, a particular type of
traveling waves known as the envelope of a multibump
solution has been established in [20]. Recently, we

have discussed a different analytical approach (semi-
discrete approximation) to obtain single as well as mul-
tipulses for a slow-fast FitzHugh-Rinzel (FHR) model
[28]. Particularly, here we investigate the local nonlin-
ear excitations in the diffusively induced system that
forms a coupled systems of partial differential equa-
tions (PDEs). The structural transitions of different
wave profiles [4,7,11,20,29,33,43] of various wave
forms can be illustrated using our methodology using
a weakly nonlinear theory. We observe envelope soli-
tons, multibump solutions and show how the predom-
inant parameters with coupling strength play a major
role in the formation of traveling wave profiles.

The underlying mechanisms for the emergence of
traveling fronts andpulses havebeen investigatedmath-
ematically [19,28]. Biophysical models can generate
two types of traveling pulses: single traveling pulses
and multipulses. The appearance and disappearance
of bumps in multibump solutions change the feature
of wave propagation. However, it is interesting to test
mathematically the existence of exact or approximate
solutions to the spatial excitable systems for the emer-
gence of traveling waves to establish the numerical
results. Here, we describe the emergence of wave prop-
agation, the stability of the solution and speed equa-
tions. Multiple equilibrium solutions can lead to two
traveling pulses known as traveling fronts and pulses.
A traveling front connects different steady states at
both ends, whereas, a traveling pulse connects the same
steady state [20,33].

The essential mechanisms are constructed using a
diffusively coupled 2D H-R network with homoge-
neous connection, which exhibits spiking activity in
the single cell dynamics. We demonstrate the multiple-
scale expansion concept in semi-discrete approxima-
tion theory, then we obtain the modified complex
Ginzburg-Landau equation (CGLE) using perturbation
theory. We derive the phase and amplitude of the trav-
eling waves. We show the effects of coupling strength
on the formation of wave propagation as well as their
characteristics. Finally, we observe the multipulses and
the transition phases to solitary pulse for small pertur-
bations on the solution of the wave profiles. We derive
the expressions of the wave profiles using the voltage
variable. In particular, we have constructed detailed
analytical resultswith numerical simulations illuminat-
ing possible traveling pulses with dispersion relations
and group velocity equations. The study of neuronal
impulses that are propagated in the form of traveling
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pulses in such networks may be relevant in brain patho-
logical dynamics for certain functional mechanisms in
neural system [10,24,34,38].

2 The solution scheme

2.1 Description of the coupled network

Wedescribe the analysis by considering a biophysically
motivated 2D H-R type spiking model [5,22,30,40]. It
can produce various neuro-computational features for
both Class I & Class II excitabilities. The two system
variables u and v in Eq. (1) represent the membrane
voltage dynamics and a recovery variable, respectively.
The positive parameters a, b, c and d have constant val-
ues. The parameter c denotes the time scale. The param-
eter I measures applied stimulus current. The goal is to
describe the spatially extended system using the single
deterministic model exhibiting oscillatory responses.
The dynamical equations of the excitable network of
N (k = 1, 2, ..., N ) oscillators with bidirectional elec-
trical coupling are described as follows

duk
dt

= c(uk − u3k
3

− vk + I )

+D(uk+1 − 2uk + uk−1),

dvk

dt
= (u2k + duk − bvk + a)/c, (1)

where D indicates the coupling. We consider two near-
est neighbor coupling configuration. The nodes in the
network are connected to their nearest neighboring
nodes by electrical coupling. The variability may con-
sider the characteristics at various levels of specificneu-
ronal receptors or differences in the regulatory effects
which can be influenced by applied or internal neu-
romodulatory process [7,20,33]. In order to perform
the analysis and study the interactions in the extended
excitable network, the extended system is considered
such that each oscillator in the network is represented in
the domain of equispacedmesh with the same coupling
topology in the homogeneous system. The dynamics
of wave generation and propagation can be described
by the dynamical H-R model. The large scale coupled
excitable network canproducediverse spatial dynamics
with different structures. One of these types of dynam-
ics induce traveling pulses. First, we transform the spa-
tial systemby reducing two equations ofmodel into one
second-order differential equation. The transformation

approach does not affect the behavior of the dynamical
system, then the governing equation becomes

ük + [b/c − c + cu2k]u̇k + (d − b)uk + u2k

+bu3k
3

+ a − I b = D(u̇k+1 − 2u̇k + u̇k−1)

+bD(uk+1 − 2uk + uk−1)/c. (2)

Mathematically, it is complicated to derive the explicit
analytical solution of the extended nonlinear system,
we can deduce the approximate solution using the semi
discrete approximation method. By introducing a new
variable uk = εmk, where 0 < ε < 1, then Eq. 2
becomes

m̈k + [(b/c − c) + cε2m2
k]ṁk + (d − b)mk + εm2

k

+ε2b
m3

k

3
= D(ṁk+1 − 2ṁk + ṁk−1)

+bD(mk+1 − 2mk + mk−1)/c. (3)

This method is also used to study the plane wave
modulation that is caused by the nonlinear terms in the
dynamics of the system [19,39]. To obtain the solution
u(x, t) in spatial coordinates, we introduce new space
and time variables as follows: Xk = εk x and Tk = εk t ,
it presents a perturbation series of functions. Now, we
consider

u(x, t) = ∑∞
k=1 εkmk(X0, X1, X2, ...T0, T1, T2, ....).

(4)

The partial derivatives are described as follows

∂
∂t = ∂

∂T0
+ ε ∂

∂T1
+ ε2 ∂

∂T2
+ .....

∂
∂x = ∂

∂X0
+ ε ∂

∂X1
+ ε2 ∂

∂X2
+ .....

(5)

An interesting property of thismultiple scale expansion
method is that, we can find the solution of the original
problem if new multi-dimensional space comes from
the physical line. To derive the expressions of the solu-
tion, we consider the membrane voltage variable in the
space and time coordinates using the series of deriva-
tives and compare different terms in diverse orders of
ε.

3 Equations of motion of the network

We derive the solution both analytically and numer-
ically for the diffusive induced network using multi-
ple scale expansion approach using this semi discrete
approximation theory. First, we transformed Eq. 1 in a
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second-order ODE (Eq. 3) using Eq. (2). Next, we per-
turbG0 and D0 upto order ε2, then the system becomes

m̈k + ε2[G0 + cm2
k]ṁk + (d − b)mk + εm2

k + ε2b
m3

k

3
= ε2D0(ṁk+1 − 2ṁk + ṁk−1)

+bD(mk+1 − 2mk + mk−1)/c, (6)

where, G0 = b/c − c and D0 = D. For simplicity, we
have mentioned D0 as D from here on. Now, we deal
with the weakly coupled spatial network with nonlin-
ear excitations. In order to obtain the modified CGLE
equation, we apply the multiple scale expansion proce-
dure. We assume the solution of Eq. 6 as follows

mk = Pkei�k + P∗
k e

−i�k + ε(Qk + Rke2i�k

+R∗
k e

−2i�k ) + O(ε2)
(7)

where �k = qk − ωt . q and ω denote normal
mode wave vector and angular velocity [28]. The
continuum limit approximation is described on the
amplitudes Pk(t), Qk(t) and Rk(t) as they change
slowly with respect to the space and time coordi-
nates. Then, we use the continuum limit approxima-
tion theory on the amplitudes Pk(t), Qk(t) and Rk(t),
it becomes P(X1, X2, T1, T2), Q(X1, X2, T1, T2) and
R(X1, X2, T1, T2). Using Taylor series expansion,
Pk±1 is given by

Pk±1 = P ± ε
∂P

∂X1
± ε2

∂P

∂X2
+ ε2

2

∂2P

∂X2
1

+ O(ε3).

First- and second-order temporal derivatives are
described as
∂Pk
∂t

= ε
∂P

∂T1
+ ε2

∂P

∂T2
+ o(ε3),

and

∂2Pk
∂t2

= ε2
∂2P

∂T 2
1

+ o(ε3),

respectively. Similarly, we can find for the amplitudes
P , Q and R. First- and second-order derivatives of mk

with new space and time variables and amplitudes P ,
Q, R are obtained by

ṁk = (ε
∂P

∂T1
+ ε2

∂P

∂T2
− iωP)ei�k

+(ε
∂P∗

∂T1
+ ε2

∂P∗

∂T2
+ iωP∗)e−i�k

+ε2
∂Q

∂T1
+ (ε2

∂R

∂T1
− ε2iωR)e2i�k

+(ε2
∂R∗

∂T1
+ ε2iωR∗)e−2i�k + o(ε3),

m̈k = (ε2
∂2P

∂T 2
1

− ε2iω
∂P

∂T1
− ε22iω

∂P

∂T2
− ω2P)ei�k

+(ε2
∂2P∗

∂T 2
1

+ ε2iω
∂P∗

∂T1
+ ε22iω

∂P∗

∂T2

−ω2P∗)e−i�k + (−ε24iω
∂R

∂T1
− ε4ω2R)e2i�k

+(ε24iω
∂R∗

∂T1
− ε4ω2R∗)e−2i�k + o(ε3).

Now, using aforementioned equations in Eq.6 and
equating the coefficients of different orders of ε, we
can find the following relations.

Note1: We get the dispersion relation of pulses for
the considered diffusive network by comparing the
coefficient of e±i�k in Eq.6 (see Appendix). The dis-
persion relation is given by

ω2 = (d − b) + (4bD sin2(q/2))/c. (8)

We have discussed the dispersion relation in Fig. 1 (a)
for various values of couplings, D (green, red and blue
lines indicate for D = 0.01, 1, 10). In the dispersion
relation of the pulses in the network, we observe that
it depends on the parameters of the diffusively coupled
system andwith the increase of D, the angular velocity,
ω changes.

Note 2: Similarly, we compare the coefficient of
εei�k in Eq. 6 (see Appendix), we get

∂P

∂T1
+ vg

∂P

∂X1
= 0. (9)

vg indicates as group velocity, the relationship is given
by

vg = bD sin q

cω
. (10)

Diffusive coupling, D plays a key role in controlling the
velocity of the traveling pulses. We have discussed the
effects of diffusion coefficient, D on the velocity of the
traveling pulses (Fig. 1 b). At lower coupling, velocity
vg changes very rapidly, however at higher coupling,
the rate of change of velocity is lower than previous
one. The velocity of propagating waves depends on the
diffusive nature of the membrane voltage dynamics,
then the propagating waves move faster across the cell
membrane with the ionic movements.

Now, we equate the coefficients involving no expo-
nential term and εe2i�k in Eq. 6 (see Appendix), we
find

Q = − 2

d − b
PP∗ (11)
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Fig. 1 The effects of normal mode wave vector, q and diffusive
coupling, D on ω and the group velocity, vg . Dispersion rela-
tion for the set of parameters [5,40] c = 3, b = 5, d = 10 and
(a) for D = 0.01, 1, 10 indicated by green, red and blue lines

respectively. (b) The effects of D on the velocity of the traveling
pulses for c = 3, b = 5, d = 10 and q = 1.5, the variations of
vg show that it changes very rapidly, however at higher diffusive
coupling, the rate of change is very low

and

R = P2

4ω2 −(d − b) − 4bD
(
sin2 q

)
/c

(12)

respectively.
Result 1: The terms depending on ε2ei�k describe the
following relation for Eq. 6 (see Appendix)

∂2P
∂T 2

1
− 2iω ∂P

∂T2
= iω(b/c − c)P + (iωc − b) | P|2P

−2(PQ + P∗R) + 4iωPD sin2 q
2

+2ibD sin q ∂P
∂X2

/c + bD cos q ∂2P
∂X2

1
/c.

(13)

Finally, using the transformation ξk = Xk − vgTk
and τk = Tk , we obtain

i
∂P

∂τ2
+ l∗

2

∂2P

∂ξ21
+ m∗ | P |2 P + i

n∗

2
P = 0. (14)

Eq. 14 presents the modified complex Ginzburg-
Landau equation, that shows the evolution of traveling
pulses in our considered diffusive network.

Remark 1 The real dispersion coefficients l∗, n∗ are
described as follows

l∗ = cbDω2 cos q − b2D2 sin2 q

c2ω3 ,

n∗ = (b/c − c) + 4D sin2(q/2)

Remark 2 Other complex dissipation coefficient m∗ is
given by

m∗ = 1

2ω

[

iωc +
(

4

d − b
− b

+ 2

−4ω2 + d − b + (4bD sin2 q)/c

)]

.

m∗
r and m∗

i indicate real and imaginary terms of m∗
respectively. The sign of l∗m∗

r plays the role to find
the modulational instability as the dispersion coeffi-
cient shows real quantity. Positive and negative values
of l∗m∗

r show that plane wavy profiles are unstable and
stable [39]. This stability criterion is independent on the
procedure in which the wave propagates. In the posi-
tive domain of l∗m∗

r , we can observe the propagating
impulses for any wave carrier.

4 Traveling wave solution

In this section, we derive the solution of Eq. 14 to
study the dynamics of the traveling wave profiles. We
construct the solution of Eq. 14 in the following form
[19,39]

P(ξk, τ2) = P0eφ

1 + e(φ+φ∗)(1+iβ)
, (15)

whereφ = qξk−ωτ2,β = γ ±√
2 + γ 2 and γ = 3m∗

r
2m∗

i
.

Substitute Eq. 15 in Eq. 14, we obtain
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Fig. 2 Emergence of spatial activities of traveling waves for the
diffusively coupled H-R system. Different formations of trav-
eling pulses are shown. The multipulses and disappearance of
multibumps with the emergence of solitary traveling waves are
presented with the parameters t = 10, c = 3, b = 5, d = 10,

q = 1.5, P0 = 1with the effects of varying ε and fixed D = 0.01
(a) ε = 0.25, (b) ε = 0.45, (c) ε = 0.7, and various diffusion
coefficients (d) D = 0.01, (e) D = 1, and (f) D = 10 with
ε = 0.6

P = P0
e−φ + cos 2φβeφ

2(cosh 2φ + cos 2φβ)

−i

(

P0
sin 2φβeφ

2(cosh 2φ + cos 2φβ)

)

. (16)

From Eq. 7, we obtain

m = 2(Pr cos� − Pi sin�) + ε[Q + 2(Rr cos 2�

−Ri sin 2�)] + O(ε2), (17)

where Rr and Ri indicate real and complex parts of R.
Finally, using Eqs. 16-17 and the expression vk = εmk ,
we obtain

uk = εP0
[
cos(�k−2βφk )eφk+e−φk cos�k

cosh 2φk+cos 2βφk

]

+εP2
0

[
− 1

(d−b)(cosh 2φk+cos 2βφk )

]

+ε2P2
0

(
e−2φk+2 cosβφk+e2φk cos 4βφk

)
a1 cos 2�k

2(cosh 2φk+cos 2βφk )
2

−ε2P2
0

(
2 sin 2βφk+e2φk sin 4βφk

)
a1 sin 2�k

2(cosh 2φk+cos 2βφk )
2 .

(18)

In Fig. 2, we observe the impact of the series expan-
sion perturbation parameter, ε on the traveling waves

for fixed values of remaining parameters in the net-
work system. The constants P0 and q take small values
[19]. The variations in the parameters do not affect the
dynamical behavior significantly. The parameter q is
considered in a small regime mentioned in Fig. 2(a).
At lower perturbation value ε = 0.25, we obtain the
envelope of multipulses for a fixed diffusive coupling
strength D = 0.01, where the bumps are unstable and
transient [20]. As ε = 0.45 increases, there is no sig-
nificant activity to generate new multibumps and the
number ofmultipulses decrease (see Fig. 2(b)). Then, at
higher ε = 0.7, the impulse is localized (see Fig. 2(c))
in the extendednetwork, it shows a single solitary pulse.
As the value of ε increases, the amplitude of the trav-
eling pulses increases. Then more ions travel across
the membrane, indicating that high-amplitude action
potentials will be generated. This type of phenomenon
can be occurred by the fluctuations in neuronal firings
[10,19]. ε effects on the structural patterns of the wave
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Fig. 3 Multipulses and single solitary traveling wave impulses
at various time period. The wave profiles appear in the form of
symmetric way, however they show delayed over time with same

amplitude modulations, the parameters are as follows c = 3,
b = 5, d = 10, D = 0.01, q = 1.5, P0 = 1, (a) ε = 0.3 and (b)
ε = 0.75 (t = 50 (blue), t = 100 (red), t = 150 (green))

profiles and transforms the pattern into single solitary
pulses. However, the feature of the traveling pulses
changes with time domain when the value of ε is fixed
and we change the diffusive coupling strength, D. This
exhibits simple traveling pulses and with the change
of the values of D, the amplitudes of the single prop-
agating waves decrease as shown in Fig. 2(d)-(f). We
show how the multipulses come out with neighboring
standing pulses that collapse to single-traveling pulse.
The solitarywavy pulse corresponds to themultipulses,
in which individual bumps are transient and nonprop-
agating. We show the changes of the single and mul-
tipulses changing with time t in Fig. 3. The amplitude
of the envelope of multipulses is independent of time.
The formations and amplitude of the asymmetric trav-
eling waves change its features with time, therefore it
is structurally unstable.

5 Instability of plane waves

In the previous section, envelope of a single and multi-
bump wave profiles are observed for Eq. 14. Next, we
find stability conditions of plane waves for small per-
turbations. Amplitude modulated pulses appear with
the effects of instability of plane waves. We consider a

plane waves in the following form

P (ξk, τ2) = P0 e
i(α ξk −l τ2), (19)

where, P0, l and α indicate the plane wave amplitude,
angular frequency and the wave number, respectively.
Using Eq. 19 in Eq. 14 and equating the real and imag-
inary terms, we obtain

l = α2 l
∗

2
− m∗

r P
2
0 , (20)

and

m∗
i P

2
0 +n∗

2
= 0. (21)

Eq. 20 describes the dispersion relation of plane waves.
Now, we investigate the instability of the plane wave
and assume a solution in the following form

P (ξk, τ2) = (P0 + b1 (ξk, τ2)) e
i(α ξk −l τ2 + b2(ξk ,τ2)),

(22)

where, the perturbation amplitude b1(ξk; τ2) is very
small with respect to P0. Using Eqs. 14, 22 and neglect-
ing the nonlinear terms of perturbations b1 and b2, we
obtain the following equations

− P0 b2τ2
+ l∗

2
b1ξξ − P0 l

∗ α b2ξ +2 P2
0 m∗

r b1 = 0,

(23)
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b1τ2
+ l∗

2
P0 b2ξξ + l∗ α b1ξ − n∗ b1 = 0. (24)

Eqs. 23–24 are known as the evolution of the pertur-
bation. We assume the solutions of the above Eqs. 23
– 24 in the form

b1 = b10 e
i(γ1 ξ−γ2 τ2) +c.c., (25)

b2 = b20 e
i(γ1 ξ−γ2 τ2) +c.c., (26)

where, γ1 and γ2 indicate wave number of the per-
turbation and propagation frequency, respectively. It is
noted that, thewave number shows real quantity and the
propagation frequency is complex. Here, c.c. denotes
complex conjugate.

Now, substituting the solutions Eqs. 25–26 in Eq. 23
and Eq. 24, we consider the following linear homoge-
neous equations for b10 and b20
(

2 P2
0 m∗

r − l∗

2
γ 2
1

)

b10 +i P0
(
γ2 − l∗ α γ1

)
b20 = 0,

(27)
(− n∗ −i

(
γ2 − l∗ α γ1

))
b10 − l∗

2
P0 γ 2

1 b20 = 0,

(28)

that can be described in the matrix notation as
MM1 = 0
where,

M =
(

2 P2
0 m∗

r − l∗
2

γ 2
1 i P0 (γ2 − l∗ α γ1)

− n∗ −i (γ2 − l∗ α γ1) − l∗
2 P0 γ 2

1

)

and

M1 =
(
b10
b20

)

.

If M represents a singular matrix, i.e., det(M)=0,
Eqs. 27–28 are the nontrivial solutions, from which
it results that
(
γ2 − l∗ α γ1

)2 = l∗2

4
γ 2
1

(

γ 2
1 −4 P2

0 m∗
r

l∗

)

+i n∗ (
γ2 − l∗ α γ1

)
. (29)

If s = γ2 − l∗ α γ1, Eq. 29 becomes

s2 −i n∗ s − l∗2

4
γ 2
1

(

γ 2
1 −4 P2

0 m∗
r

l∗

)

= 0. (30)

Equation 29 describes the dispersion relation of the
perturbation. It is noted that, for a fixed value of γ1,

the term m∗
r

l∗ plays an important role in controlling the
dynamics of γ2. Solving Eq. 30, we obtain

s = i
n∗

2
±

√

l∗2 γ 2
1

(

γ 2
1 − 4 P2

0 m∗
r

l∗

)

− n∗2

2
. (31)

Fig. 4 Effects ofwave vector q on the real dissipation coefficient
n∗ for D = 0.01

The following three cases may arise according to the
sign of the discriminant:

Case 1: l∗2 γ 2
1

(

γ 2
1 − 4 P2

0 m∗
r

l∗

)

− n∗2 = 0, i.e., s =
i n

∗
2 .

The imaginary part of γ2 i.e., imaginary part of s,
is equal to n∗/2. Fig. 4 shows that n∗ < 0, which
measures that the wave propagates around its original
value and the perturbations collapsed after a certain
time duration. So, the plane wave is stable.

Case 2: l∗2 γ 2
1

(

γ 2
1 − 4 P2

0 m∗
r

l∗

)

− n∗2 > 0, i.e.,

Im(s) = i n
∗
2 .

Similarly it can be deduced that the plane wave is
also stable.

Case 3: l∗2 γ 2
1

(

γ 2
1 − 4 P2

0 m∗
r

l∗

)

− n∗2 < 0, i.e.,

s = i

⎛

⎜
⎜
⎝

n∗
2 ±

√

n∗2 − l∗2 γ 2
1

(

γ 2
1 − 4 P20 m∗

r
l∗

)

2

⎞

⎟
⎟
⎠ .

We also know that, if Im(s) < 0, the plane wave is
stable. This implies

l∗2 γ 2
1

(

γ 2
1 − 4 P2

0 m∗
r

l∗

)

> 0.

The above expression indicates that, if l∗ and m∗
r

have opposite signs, i.e. l∗m∗
r < 0, the plane wave

solution is stable. Similarly, it is shown that the plane
wave solution exists in unstable region, i.e., the pertur-
bations increase exponentially in time, if l∗m∗

r > 0.
The local growth rate, i.e., the gain for modulational
instability can be written as
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F = |Imy| = |Im γ2|

= 1

2

⎛

⎝n∗ +
√
√
√
√n∗2 − l∗2 γ 2

1

(

γ 2
1 −4 P2

0 m∗
r

l∗

)⎞

⎠ .

(32)

If the wave number γ1 = P0
√

m∗
r

l∗ and the corre-

sponding gain F = 1
2

(

n∗ +
√
n∗2 +3 P4

0 m∗2
r

)

, the

gain becomes maximum, i.e., the plane wave modu-
lates itself. The plane wave amplitude and the dissipa-
tion coefficient of the CGLE system (Eq. 14) show that
it controls the growth rate of modulational instability
which is clear from the above expression of F .

6 Conclusions

To obtain and compute the traveling pulses solution
describing the motion of impulses, we described the
characteristics of the localized nonlinear excitations
in a diffusively connected 2D H-R type model net-
work characterized with nearest neighbour interac-
tions. We transform the coupled dynamical equations
into wave form and proceed to analyze the dynamical
features with traveling pulses solution. To achieve our
results, we derive multiple scale analysis method with
semi discrete approximation. We obtain the dispersion
and group velocity equations with diffusive coupling
strengths and other system parameters. Then, we derive
the modified CGLE equation from the original dynam-
ical equations representing the equations ofmotion that
governs the evolution of the traveling waves solution.
The analytical results demonstrate envelope solitary
pulse andmultipulses that are found in numerical simu-
lations. The single traveling pulses of the biophysically
motivated extended excitable system are demonstrated
from nonlinear dynamical system’s perspective. Suc-
cessive transitions from single traveling pulses to mul-
tipulses are observed. The modulated travelling pulses
and its features are obtained which are influenced by
diffusive couplings and small series expansion param-
eter.

Our observed results may be interesting to investi-
gate further various characteristics of traveling wave
profiles in spatial excitable media [19,20,39]. The
electrically coupled neurons in this type of network
with weak coupling can communicate and partici-
pate in the collective neural dynamics. The neurons

can also effectively participate in information pro-
cessing in spatial domain [7,34,39,41]. These pulses
and traveling waves are in fact the effects of cata-
lyst which allows the synapses to exchange neuro-
transmitters. The generated wave somehow releases
the neuro-transmitters, within the synapse, from one
neuron to another. Neuronal ensembles can process
stimuli in various ways. The propagating waves exhibit
nonlinear-envelope solitons in their amplitudes, as we
showed in this study. The amplitude of the traveling
wave impulses depend on the series expansion param-
eter and coupling that indicate the variations in ionic
movements across neuronal membrane, that leads to
the generation of various amplitude’s action potentials.
This is caused by fluctuations in the sequence of neu-
ronal firing times [33,34]. The propagation of impulses
in the extended spatial excitable medium depend on the
transmembrane voltage differences. The appearance of
emerging traveling wave propagation can be explored
further to measure different characteristics in the cou-
pled network of biophysically excitable system by the
variations of system parameters and diffusive coupling.
The results show that the network can effectively par-
ticipate in the collective behavior in both space-time
scales.
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Appendix

Equation 6 can be written in the following form
(

ε2
∂2 P

∂ T 2
1

− ε2iω
∂P

∂ T1
− ε2 2iω

∂P

∂ T2
− ω2 P

)

ei �k

+
(

ε2
∂2 P∗

∂ T 2
1

+ ε2iω
∂ P∗

∂ T1
+ ε2 2iω

∂ P∗

∂ T2
− ω2 P∗

)
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e−i �k +
(

− ε2 4iω
∂R

∂ T1
− ε4ω2 R

)

e2i �k

+
(

ε2 4iω
∂ R∗

∂ T1
− ε4ω2 R∗

)

e−2i �k

+ ε2
[(

b

c
− c

)

+ c
(
P2 e2i �k + P∗2 e−2i �k +2P P∗)

]

(
−iωP ei �k +iω P∗ e−i �k

)
+ (d − b)

[
P ei �k + P∗ e−i �k +ε

(
Q + R e2i �k + R∗ e−2i �k

)]

+ε
(
P2 e2i �k + P∗2 e−2i �k +2P P∗)

+2 ε2
(
P ei �k + P∗ e−i �k

) (
Q + R e2i �k + R∗ e−2i �k

)

+b

3
ε2

(
P3 e3i �k + P∗3 e−3i �k

+3 P2 P∗ ei �k +3P P∗2 e−2i �k
)

+ o
(
ε3

)

= b

c
D (

(

P + ε
∂P

∂ X1
+ ε2

∂P

∂ X2
+ ε2

2
∂2 P

∂ X2
1

)

eiq ei �k

+
(

P∗ +ε
∂ P∗

∂ X1
+ ε2

∂ P∗

∂ X2
+ ε2

2
∂2 P∗

∂ X2
1

)

e−iq e−i �k

+ε

(

Q + ε
∂Q

∂ X1
+

(

R + ε
∂R

∂ X1

)

e2iq e2i �k

+
(

R∗ +ε
∂ R∗

∂ X1

)

e−2iq e−2i �k

)

−2
(
P ei �k + P∗ e−i �k +ε

(
Q + R e2i �k + R∗ e−2i �k

))

+
(

P − ε
∂P

∂ X1
− ε2

∂P

∂ X2
+ ε2

2
∂2 P

∂ X2
1

)

e−iq ei �k

+
(

P∗ −ε
∂ P∗

∂ X1
− ε2

∂ P∗

∂ X2
+ ε2

2
∂2 P∗

∂ X2
1

)

eiq e−i �k

+ε

(

Q − ε
∂Q

∂ X1
+

(

R − ε
∂R

∂ X1

)

e−2iq e2i �k

+
(

R∗ −ε
∂ R∗

∂ X1

)

e2iq e−2i �k

))

+iω ε2 D(−P eiq ei �k + P∗ e−iq e−i �k

−P e−iq ei �k + P∗ eiq e−i �k )

−2iω ε2 D
(
−P ei �k + P∗ e−i �k

)
+ o

(
ε3

)
,
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